Two-parameter deformed multimode oscillators and q-symmetric states

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 30353
(http://iopscience.iop.org/0305-4470/30/2/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.110
The article was downloaded on 02/06/2010 at 06:01

Please note that terms and conditions apply.

Two-parameter deformed multimode oscillators and q-symmetric states

W-S Chung
Department of Physics and Research Institute of Natural Science, Gyeongsang National University, Jinju, 660-701, Korea

Received 15 July 1996, in final form 23 September 1996

Abstract

Two types of coherent states for the two-parameter deformed multimode oscillator system are investigated. Moreover, two-parameter deformed $g l(n)$ algebra and deformed symmetric states are constructed.

1. Introduction

Quantum groups or the q-deformed Lie algebra imply some specific deformations of classical Lie algebras. From a mathematical point of view, it is a non-commutative associative Hopf algebra. The structure and representation theory of quantum groups have been developed extensively by Jimbo [1] and Drinfeld [2].

The q-deformation of the Heisenberg algebra was developed by Arik and Coon [3], Macfarlane [4] and Biedenharn [5]. Recently, there has been some interest in more general deformations involving an arbitrary real functions of weight generators and including q deformed algebras as a special case [6-10].

Recently Greenberg [11] has studied the following q-deformation of the multimode bosonic algebra:

$$
a_{i} a_{j}^{\dagger}-q a_{j}^{\dagger} a_{i}=\delta_{i j}
$$

where the deformation parameter q has to be real. The main problem of Greenberg's approach is that one cannot derive the relation between the operators a_{i} at all. In order to resolve this problem, Mishra and Rajasekaran [12] generalized the algebra to the complex parameter q with $|q|=1$ and another real deformation parameter p. In this paper we use the result of [12] to construct two types of coherent states and q-symmetric states.

2. Two-parameter deformed multimode oscillators

2.1. Representation and coherent states

In this subsection we discuss the algebra given in [12] and develop its representation. Mishra and Rajasekaran's algebra for multimode oscillators is given by

$$
\begin{align*}
& a_{i} a_{j}^{\dagger}=q a_{j}^{\dagger} a_{i} \quad(i<j) \\
& a_{i} a_{i}^{\dagger}-p a_{i}^{\dagger} a_{i}=1 \tag{1}\\
& a_{i} a_{j}=q^{-1} a_{j} a_{i} \quad(i<j)
\end{align*}
$$

where $i, j=1,2, \ldots, n$. In this case we can say that a_{i}^{\dagger} is a Hermitian adjoint of a_{i}.
The Fock space representation of the algebra (1) can be easily constructed by introducing the Hermitian number operators $\left\{N_{1}, N_{2}, \ldots, N_{n}\right\}$ obeying

$$
\begin{equation*}
\left[N_{i}, a_{j}\right]=-\delta_{i j} a_{j} \quad\left[N_{i}, a_{j}^{\dagger}\right]=\delta_{i j} a_{j}^{\dagger} \quad(i, j=1,2, \ldots, n) \tag{2}
\end{equation*}
$$

From the second relation of (1) and equation (2), the relation between the number operator and the creation and annihilation operators is given by

$$
\begin{equation*}
a_{i}^{\dagger} a_{i}=\left[N_{i}\right]=\frac{p^{N_{i}}-1}{p-1} \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
N_{i}=\sum_{k=1}^{\infty} \frac{(1-p)^{k}}{1-p^{k}}\left(a_{i}^{\dagger}\right)^{k} a_{i}^{k} \tag{4}
\end{equation*}
$$

Let $|0,0, \ldots, 0\rangle$ be the unique ground state of this system satisfying

$$
\begin{equation*}
N_{i}|0,0, \ldots, 0\rangle=0 \quad a_{i}|0,0, \ldots, 0\rangle=0 \quad(i, j=1,2, \ldots, n) \tag{5}
\end{equation*}
$$

and $\left\{\left|n_{1}, n_{2}, \ldots, n_{n}\right\rangle \mid n_{i}=0,1,2, \ldots\right\}$ be the complete set of the orthonormal number eigenstates obeying

$$
\begin{equation*}
N_{i}\left|n_{1}, n_{2}, \ldots, n_{n}\right\rangle=n_{i}\left|n_{1}, n_{2}, \ldots, n_{n}\right\rangle \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle n_{1}, \ldots, n_{n} \mid n_{1}^{\prime}, \ldots, n_{n}^{\prime}\right\rangle=\delta_{n_{1} n_{1}^{\prime}} \cdots \delta_{n_{n} n_{n}^{\prime}} \tag{7}
\end{equation*}
$$

If we set

$$
\begin{equation*}
a_{i}\left|n_{1}, n_{2}, \ldots, n_{n}\right\rangle=f_{i}\left(n_{1}, \ldots, n_{n}\right)\left|n_{1}, \ldots, n_{i}-1, \ldots, n_{n}\right\rangle \tag{8}
\end{equation*}
$$

from the fact that a_{i}^{\dagger} is a Hermitian adjoint of a_{i}, we have
$a_{i}^{\dagger}\left|n_{1}, n_{2}, \ldots, n_{n}\right\rangle=f^{*}\left(n_{1}, \ldots, n_{i}+1, \ldots, n_{n}\right)\left|n_{1}, \ldots, n_{i}+1, \ldots, n_{n}\right\rangle$.
Making use of the relation $a_{i} a_{i+1}=q^{-1} a_{i+1} a_{i}$ we find the following relation for the f_{i} :

$$
\begin{align*}
& q \frac{f_{i+1}\left(n_{1}, \ldots, n_{n}\right)}{f_{i+1}\left(n_{1}, \ldots, n_{i}-1, \ldots, n_{n}\right.}=\frac{f_{i}\left(n_{1}, \ldots, n_{n}\right)}{f_{i}\left(n_{1}, \ldots, n_{i+1}-1, \ldots, n_{n}\right)} \\
& \left|f_{i}\left(n_{1}, \ldots, n_{i}+1, \ldots, n_{n}\right)\right|^{2}-p\left|f_{i}\left(n_{1}, \ldots, n_{n}\right)\right|^{2}=1 \tag{10}
\end{align*}
$$

Solving the above equations we find

$$
\begin{equation*}
f_{i}\left(n_{1}, \ldots, n_{n}\right)=q^{\sum_{k=i+1}^{n} n_{k}} \sqrt{\left[n_{i}\right]} \tag{11}
\end{equation*}
$$

where $[x]$ is defined as

$$
[x]=\frac{p^{x}-1}{p-1}
$$

Thus the representation of this algebra becomes

$$
\begin{align*}
a_{i}\left|n_{1}, \ldots, n_{n}\right\rangle & =q^{\sum_{k=i+1}^{n} n_{k}} \sqrt{\left[n_{i}\right]}\left|n_{1}, \ldots, n_{i}-1, \ldots, n_{n}\right\rangle \\
a_{i}^{\dagger}\left|n_{1}, \ldots, n_{n}\right\rangle & =q^{-\sum_{k=i+1}^{n} n_{k}} \sqrt{\left[n_{i}+1\right]}\left|n_{1}, \ldots, n_{i}+1, \ldots, n_{n}\right\rangle . \tag{12}
\end{align*}
$$

The general eigenstates $\left|n_{1}, n_{2}, \ldots, n_{n}\right\rangle$ are obtained by applying the operators a_{i}^{\dagger} to the ground state $|0,0, \ldots, 0\rangle$:

$$
\begin{equation*}
\left|n_{1}, n_{2}, \ldots, n_{n}\right\rangle=\frac{\left(a_{n}^{\dagger}\right)^{n_{n}} \cdots\left(a_{1}^{\dagger}\right)^{n_{1}}}{\sqrt{\left[n_{n}\right]!\cdots\left[n_{1}\right]!}}|0,0, \ldots, 0\rangle \tag{13}
\end{equation*}
$$

where

$$
[n]!=[n][n-1] \cdots[2][1] \quad[0]!=1
$$

The coherent states for the $g l_{q}(n)$ algebra are usually defined as

$$
\begin{equation*}
a_{i}\left|z_{1}, \ldots, z_{i}, \ldots, z_{n}\right\rangle_{-}=z_{i}\left|z_{1}, \ldots, z_{i}, \ldots, z_{n}\right\rangle_{-} \tag{14}
\end{equation*}
$$

From the $g l_{q}(n)$-covariant oscillator algebra we obtain the following commutation relation between the z_{i} and the z_{i}^{*}, where z_{i}^{*} is a complex conjugate of z_{i} :

$$
\begin{align*}
z_{i} z_{j} & =q z_{j} z_{i} & (i<j) \\
z_{i}^{*} z_{j}^{*} & =\frac{1}{q} z_{j}^{*} z_{i} & (i<j) \tag{15}\\
z_{i}^{*} z_{j} & =q z_{j} z_{i}^{*} & (i \neq j) \\
z_{i}^{*} z_{i} & =z_{i} z_{i}^{*} &
\end{align*}
$$

Using these relations the coherent states become
$\left|z_{1}, \ldots, z_{n}\right\rangle_{-}=c\left(z_{1}, \ldots, z_{n}\right) \sum_{n_{1}, \ldots, n_{n}=0}^{\infty} \frac{z_{n}^{n_{n}} \cdots z_{1}^{n_{1}}}{\sqrt{\left[n_{1}\right]!\cdots\left[n_{n}\right]!}}\left|n_{1}, n_{2}, \ldots, n_{n}\right\rangle$.
Using (13) we can rewrite equation (16) as

$$
\begin{equation*}
\left|z_{1}, \ldots, z_{n}\right\rangle_{-}=c\left(z_{1}, \ldots, z_{n}\right) e_{p}\left(z_{n} a_{n}^{\dagger}\right) \cdots e_{p}\left(z_{1} a_{1}^{\dagger}\right)|0,0, \ldots, 0\rangle \tag{17}
\end{equation*}
$$

where

$$
e_{p}(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{[n]!}
$$

is a deformed exponential function.
In order to obtain the normalized coherent states, we should impose the condition $\left\langle z_{1}, \ldots, z_{n} \mid z_{1}, \ldots, z_{n}\right\rangle_{-}=1$. Then the normalized coherent states are given by
$\left|z_{1}, \ldots, z_{n}\right\rangle_{-}=\frac{1}{\sqrt{e_{p}\left(\left|z_{1}\right|^{2}\right) \cdots e_{p}\left(\left|z_{n}\right|^{2}\right)}} e_{p}\left(z_{n} a_{n}^{\dagger}\right) \cdots e_{p}\left(z_{1} a_{1}^{\dagger}\right)|0,0, \ldots, 0\rangle$
where $\left|z_{i}\right|^{2}=z_{i} z_{i}^{*}=z_{i}^{*} z_{i}$.

2.2. Positive energy coherent states

The purpose of this subsection is to obtain another type of coherent states for the algebra (1). In order to do so, it is convenient to introduce n sub-Hamiltonians as follows

$$
H_{i}=a_{i}^{\dagger} a_{i}-v
$$

where

$$
v=\frac{1}{1-p}
$$

Then the commutation relation between the sub-Hamiltonians and mode operators are given by

$$
\begin{equation*}
H_{i} a_{j}^{\dagger}=\left(\delta_{i j}(p-1)+1\right) a_{j}^{\dagger} H_{i} \quad\left[H_{i}, H_{j}\right]=0 \tag{19}
\end{equation*}
$$

The action of the sub-Hamiltonian on the number eigenstates gives

$$
\begin{equation*}
H_{i}\left|n_{1}, n_{2}, \ldots, n_{n}\right\rangle=-\frac{p^{n_{i}}}{1-p}\left|n_{1}, n_{2}, \ldots, n_{n}\right\rangle \tag{20}
\end{equation*}
$$

Thus the energy becomes negative when $0<p<1$. As was noticed in [13], for the positive energy states it is not the a_{i} but the a_{i}^{\dagger} that play the part of of the lowering operator:
$H_{i}\left|\lambda_{1} p^{n_{1}}, \ldots, \lambda_{n} p^{n_{n}}\right\rangle=\lambda_{i} p^{n_{i}}\left|\lambda_{1} p^{n_{1}}, \ldots, \lambda_{n} p^{n_{n}}\right\rangle$
$a_{i}^{\dagger}\left|\lambda_{1} p^{n_{1}}, \ldots, \lambda_{n} p^{n_{n}}\right\rangle=q^{-\sum_{k=i+1}^{n} n_{k}} \sqrt{\lambda_{i} p^{n_{i}+1}+v}\left|\lambda_{1} p^{n_{1}}, \ldots, \lambda_{i} p^{n_{i}+1}, \ldots, \lambda_{n} p^{n_{n}}\right\rangle$
$a_{i}\left|\lambda_{1} p^{n_{1}}, \ldots, \lambda_{n} p^{n_{n}}\right\rangle=q^{\sum_{k=i+1}^{n} n_{k}} \sqrt{\lambda_{i} p^{n_{i}}+v}\left|\lambda_{1} p^{n_{1}}, \ldots, \lambda_{i} p^{n_{i}-1}, \ldots, \lambda_{n} p^{n_{n}}\right\rangle$
where $\lambda_{1}, \ldots, \lambda_{n}>0$.
Due to this fact, it is natural to define coherent states corresponding to the representation (21) as the eigenstates of the a_{i}^{\dagger} :

$$
\begin{equation*}
a_{i}^{\dagger}\left|z_{1}, \ldots, z_{n}\right\rangle_{+}=z_{i}\left|z_{1}, \ldots, z_{n}\right\rangle_{+} \tag{22}
\end{equation*}
$$

Because the representation (21) depends on n free parameters λ_{i}, the coherent states $\left|z_{1}, \ldots, z_{n}\right\rangle_{+}$can take different forms.

If we assume that the positive energy states are normalizable, i.e.

$$
\left\langle\lambda_{1} p^{n_{1}}, \ldots, \lambda_{n} p^{n_{n}} \mid \lambda_{1} p^{n_{1}^{\prime}}, \ldots, \lambda_{n} p^{n_{n}^{\prime}}\right\rangle=\delta_{n_{1} n_{1}^{\prime}} \cdots \delta_{n_{n} n_{n}^{\prime}}
$$

and form exactly one series for some fixed λ_{i} 's, we can then obtain

$$
\begin{align*}
\left|z_{1}, \ldots, z_{n}\right\rangle_{+}= & C \sum_{n_{1}, \ldots, n_{n}=-\infty}^{\infty}\left[\prod_{k=0}^{n} \frac{p^{n_{k}\left(n_{k}-1\right) / 4}}{\sqrt{\left(-v / \lambda_{k} ; p\right)_{n_{k}}}}\left(\frac{1}{\sqrt{\lambda_{k}}}\right)^{n_{k}}\right] \\
& \times z_{n}^{n_{n}} \cdots z_{1}^{n_{1}}\left|\lambda_{1} p^{-n_{1}}, \ldots, \lambda_{n} p^{-n_{n}}\right\rangle . \tag{23}
\end{align*}
$$

If we require that ${ }_{+}\left\langle z_{1}, \ldots, z_{n} \mid z_{1}, \ldots, z_{n}\right\rangle_{+}=1$, we have

$$
\begin{equation*}
C^{-2}=\prod_{k=1}^{n}{ }_{0} \psi_{1}\left(-\frac{v}{\lambda_{k}} ; p,-\frac{\left|z_{k}\right|^{2}}{\lambda_{k}}\right) \tag{24}
\end{equation*}
$$

where the bilateral p-hypergeometric series ${ }_{0} \psi_{1}(a ; p, x)$ is defined [14] by

$$
\begin{equation*}
{ }_{0} \psi_{1}(a ; p, x)=\sum_{n=-\infty}^{\infty} \frac{(-)^{n} p^{n(n-1) / 2}}{(a ; p)_{n}} x^{n} \tag{25}
\end{equation*}
$$

2.3. Two-parameter deformed gl(n) algebra

The purpose of this subsection is to derive the deformed $g l(n)$ algebra from the deformed multimode oscillator algebra. The multimode oscillators given in (1) can be arrayed in bilinear form to construct the generators

$$
\begin{equation*}
E_{i j}=a_{i}^{\dagger} a_{j} \tag{26}
\end{equation*}
$$

From the fact that a_{i}^{\dagger} is a Hermitian adjoint of a_{i}, we know that

$$
\begin{equation*}
E_{i j}^{\dagger}=E_{j i} \tag{27}
\end{equation*}
$$

Then the deformed $g l(n)$ algebra is obtained from the algebra (1):

$$
\begin{align*}
& {\left[E_{i i}, E_{j j}\right]=0} \\
& {\left[E_{i i}, E_{j k}\right]=0 \quad(i \neq j \neq k)} \\
& {\left[E_{i j}, E_{j i}\right]=E_{i i}-E_{j j} \quad(i \neq j)} \\
& E_{i i} E_{i j}-p E_{i j} E_{i i}=E_{i j} \quad(i \neq j) \tag{28}\\
& E_{i j} E_{i k}= \begin{cases}q^{-1} E_{i k} E_{i j} & \text { if } j<k \\
q E_{i k} E_{i j} & \text { if } j>k\end{cases} \\
& E_{i j} E_{k l}=q^{2(R(i, k)+R(j, l)-R(j, k)-R(i, l))} E_{k l} E_{i j} \quad(i \neq j \neq k \neq l)
\end{align*}
$$

where the symbol $R(i, j)$ is defined by

$$
R(i, j)= \begin{cases}1 & \text { if } i>j \\ 0 & \text { if } i \leqslant j\end{cases}
$$

This algebra goes to an ordinary $g l(n)$ algebra when the deformation parameters q and p go to 1 .

3. q-symmetric states

In this section we study the statistics of many particle state. Let N be the number of particles. Then the N-partcle state can be obtained from the tensor product of the singleparticle states:

$$
\begin{equation*}
\left|i_{1}, \ldots, i_{N}\right\rangle=\left|i_{1}\right\rangle \otimes\left|i_{2}\right\rangle \otimes \cdots \otimes\left|i_{N}\right\rangle \tag{29}
\end{equation*}
$$

where i_{1}, \ldots, i_{N} take one value among $\{1,2, \ldots, n\}$ and the single-particle state is defined by $\left|i_{k}\right\rangle=a_{i_{k}}^{\dagger}|0\rangle$.

Consider the case where k appears n_{k} times in the set $\left\{i_{1}, \ldots, i_{N}\right\}$. Then we have

$$
\begin{equation*}
n_{1}+n_{2}+\cdots+n_{n}=\sum_{k=1}^{n} n_{k}=N \tag{30}
\end{equation*}
$$

Using these facts we can define the q-symmetric states as follows:

$$
\begin{equation*}
\left|i_{1}, \ldots, i_{N}\right\rangle_{q}=\sqrt{\frac{\left[n_{1}\right]_{p^{2}}!\cdots\left[n_{n}\right]_{p^{2}}!}{[N]_{p^{2}}!}} \sum_{\sigma \in \operatorname{Perm}} \operatorname{sgn}_{q}(\sigma)\left|i_{\sigma(1)} \cdots i_{\sigma(N)}\right\rangle \tag{31}
\end{equation*}
$$

where

$$
\begin{align*}
& \operatorname{sgn}_{q}(\sigma)=q^{R\left(i_{1} \cdots i_{N}\right)} p^{R(\sigma(1) \cdots \sigma(N))} \\
& R\left(i_{1}, \ldots, i_{N}\right)=\sum_{k=1}^{N} \sum_{l=k+1}^{N} R\left(i_{k}, i_{l}\right) \tag{32}
\end{align*}
$$

and $[x]_{p^{2}}=\left(p^{2 x}-1\right) /\left(p^{2}-1\right)$. Then the q-symmetric states obey

$$
\left|\ldots, i_{k}, i_{k+1}, \ldots\right\rangle_{q}= \begin{cases}q^{-1}\left|\ldots, i_{k+1}, i_{k}, \ldots\right\rangle_{q} & \text { if } i_{k}\left\langle i_{k+1}\right. \tag{33}\\ \left|\ldots, i_{k+1}, i_{k}, \ldots\right\rangle_{q} & \text { if } i_{k}=i_{k+1} \\ q\left|\ldots, i_{k+1}, i_{k}, \ldots\right\rangle_{q} & \text { if } i_{k}>i_{k+1}\end{cases}
$$

The above property can be rewritten by introducing the deformed transition operator $P_{k, k+1}$ obeying

$$
\begin{equation*}
P_{k, k+1}\left|\ldots, i_{k}, i_{k+1}, \ldots\right\rangle_{q}=\left|\ldots, i_{k+1}, i_{k}, \ldots\right\rangle_{q} \tag{34}
\end{equation*}
$$

This operator satisfies

$$
\begin{equation*}
P_{k+1, k} P_{k, k+1}=I d \quad \text { so } \quad P_{k+1, k}=P_{k, k+1}^{-1} \tag{35}
\end{equation*}
$$

Then equation (33) can be written as

$$
\begin{equation*}
P_{k, k+1}\left|\ldots, i_{k}, i_{k+1}, \ldots\right\rangle_{q}=q^{-\epsilon\left(i_{k}, i_{k+1}\right)}\left|\ldots, i_{k+1}, i_{k}, \ldots\right\rangle_{q} \tag{36}
\end{equation*}
$$

where $\epsilon(i, j)$ is defined as

$$
\epsilon(i, j)= \begin{cases}1 & \text { if } i>j \\ 0 & \text { if } i=j \\ -1 & \text { if } i<j\end{cases}
$$

It is worth noting that the relation (36) does not contain the deformation parameter p. Also, relation (36) goes to the symmetric relation for the ordinary bosons when the deformation parameter q goes to 1 . If we define the fundamental q-symmetric state $|q\rangle$ as

$$
|q\rangle=\left|i_{1}, i_{2}, \ldots, i_{N}\right\rangle_{q}
$$

with $i_{1} \leqslant i_{2} \leqslant \cdots \leqslant i_{N}$, we have for any k

$$
\left.\left.\left|P_{k, k+1}\right| q\right\rangle\left.\right|^{2}=\| q\right\rangle\left.\right|^{2}=1
$$

In deriving the above relation we used the following identity:

$$
\sum_{\sigma \in \operatorname{Perm}} p^{R(\sigma(1), \ldots, \sigma(N))}=\frac{[N]_{p^{2}}!}{\left[n_{1}\right]_{p^{2}}!\cdots\left[n_{n}\right]_{p^{2}}!}
$$

4. Concluding remarks

In conclusion, we have used the two-parameter deformed multimode oscillator system given in [12] to construct its representation, coherent states and deformed $g l_{q}(n)$ algebra. The mutimode oscillator is important for investigating many-body quantum mechanics and statistical mechanics. In order to construct the new statistical behaviour for deformed particles obeying the algebra (1), we have investigated the defomed symmetric property of two-parameter deformed mutimode states.

Acknowledgments

I thank the referee for helpful comments. This paper was supported by the KOSEF (961-0201-004-2) and the present studies were supported by Basic Science Research Program, Ministry of Education, 1996 (BSRI-96-2413).

References

[1] Jimbo M 1985 Lett. Math. Phys. 10 63; 1986 Lett. Math. Phys. 11247
[2] Drinfeld V 1986 Proc. Int. Congress of Mathematicians vol 1 (Berkeley, CA, 1986) (New York: Academic)
[3] Arik M and Coon D 1976 J. Math. Phys. 17524
[4] Macfarlane A 1989 J. Phys. A: Math. Gen. 224581
[5] Biedenharn L 1989 J. Phys. A: Math. Gen. 22 L873
[6] Polychronakos A 1990 Mod. Phys. Lett. 5A 2325
[7] Rocek M 1991 Phys. Lett. 225B 554
[8] Daskaloyannis C 1991 J. Phys. A: Math. Gen. 24 L789
[9] Chung W S, Chung K S, Nam S T and Um C I 1993 Phys. Lett. 183A 363
[10] Chung W S 1994 J. Math. Phys. 353631
[11] Greenberg O 1991 Phys. Rev. D 434111
[12] Mishira A and Rajasekaran G 1994 Mod. Phys. Lett. 9419
[13] Spiridonov V 1995 Lett. Math. Phys. 35179
[14] Gasper G and Rhaman M 1990 Basic Hypergeometric Series (Cambridge: Cambridge University Press)

