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Abstract. Two types of coherent states for the two-parameter deformed multimode oscillator
system are investigated. Moreover, two-parameter deformedgl(n) algebra and deformed
symmetric states are constructed.

1. Introduction

Quantum groups or theq-deformed Lie algebra imply some specific deformations of classical
Lie algebras. From a mathematical point of view, it is a non-commutative associative Hopf
algebra. The structure and representation theory of quantum groups have been developed
extensively by Jimbo [1] and Drinfeld [2].

The q-deformation of the Heisenberg algebra was developed by Arik and Coon [3],
Macfarlane [4] and Biedenharn [5]. Recently, there has been some interest in more general
deformations involving an arbitrary real functions of weight generators and includingq-
deformed algebras as a special case [6–10].

Recently Greenberg [11] has studied the followingq-deformation of the multimode
bosonic algebra:

aia
†
j − qa

†
j ai = δij

where the deformation parameterq has to be real. The main problem of Greenberg’s
approach is that one cannot derive the relation between the operatorsai at all. In order to
resolve this problem, Mishra and Rajasekaran [12] generalized the algebra to the complex
parameterq with |q| = 1 and another real deformation parameterp. In this paper we use
the result of [12] to construct two types of coherent states andq-symmetric states.

2. Two-parameter deformed multimode oscillators

2.1. Representation and coherent states

In this subsection we discuss the algebra given in [12] and develop its representation. Mishra
and Rajasekaran’s algebra for multimode oscillators is given by

aia
†
j = qa

†
j ai (i < j)

aia
†
i − pa

†
i ai = 1

aiaj = q−1ajai (i < j)

(1)
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wherei, j = 1, 2, . . . , n. In this case we can say thata†
i is a Hermitian adjoint ofai .

The Fock space representation of the algebra (1) can be easily constructed by introducing
the Hermitian number operators{N1, N2, . . . , Nn} obeying

[Ni, aj ] = −δij aj [Ni, a
†
j ] = δij a

†
j (i, j = 1, 2, . . . , n). (2)

From the second relation of (1) and equation (2), the relation between the number operator
and the creation and annihilation operators is given by

a
†
i ai = [Ni ] = pNi − 1

p − 1
(3)

or

Ni =
∞∑
k=1

(1 − p)k

1 − pk
(a

†
i )
kaki . (4)

Let |0, 0, . . . ,0〉 be the unique ground state of this system satisfying

Ni |0, 0, . . . ,0〉 = 0 ai |0, 0, . . . ,0〉 = 0 (i, j = 1, 2, . . . , n) (5)

and {|n1, n2, . . . , nn〉|ni = 0, 1, 2, . . .} be the complete set of the orthonormal number
eigenstates obeying

Ni |n1, n2, . . . , nn〉 = ni |n1, n2, . . . , nn〉 (6)

and

〈n1, . . . , nn|n′
1, . . . , n

′
n〉 = δn1n

′
1
· · · δnnn′

n
. (7)

If we set

ai |n1, n2, . . . , nn〉 = fi(n1, . . . , nn)|n1, . . . , ni − 1, . . . , nn〉 (8)

from the fact thata†
i is a Hermitian adjoint ofai , we have

a
†
i |n1, n2, . . . , nn〉 = f ∗(n1, . . . , ni + 1, . . . , nn)|n1, . . . , ni + 1, . . . , nn〉. (9)

Making use of the relationaiai+1 = q−1ai+1ai we find the following relation for thefi :

q
fi+1(n1, . . . , nn)

fi+1(n1, . . . , ni − 1, . . . , nn
= fi(n1, . . . , nn)

fi(n1, . . . , ni+1 − 1, . . . , nn)

|fi(n1, . . . , ni + 1, . . . , nn)|2 − p|fi(n1, . . . , nn)|2 = 1. (10)

Solving the above equations we find

fi(n1, . . . , nn) = q
∑n

k=i+1 nk
√

[ni ] (11)

where [x] is defined as

[x] = px − 1

p − 1
.

Thus the representation of this algebra becomes

ai |n1, . . . , nn〉 = q
∑n

k=i+1 nk
√

[ni ]|n1, . . . , ni − 1, . . . , nn〉
a

†
i |n1, . . . , nn〉 = q− ∑n

k=i+1 nk
√

[ni + 1]|n1, . . . , ni + 1, . . . , nn〉.
(12)

The general eigenstates|n1, n2, . . . , nn〉 are obtained by applying the operatorsa†
i to the

ground state|0, 0, . . . ,0〉:

|n1, n2, . . . , nn〉 = (a
†
n)
nn · · · (a†

1)
n1

√
[nn]! · · · [n1]!

|0, 0, . . . ,0〉 (13)
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where

[n]! = [n][n− 1] · · · [2][1] [0]! = 1.

The coherent states for theglq(n) algebra are usually defined as

ai |z1, . . . , zi, . . . , zn〉− = zi |z1, . . . , zi, . . . , zn〉− . (14)

From theglq(n)-covariant oscillator algebra we obtain the following commutation relation
between thezi and thez∗

i , wherez∗
i is a complex conjugate ofzi :

zizj = qzj zi (i < j)

z∗
i z

∗
j = 1

q
z∗
j zi (i < j)

z∗
i zj = qzj z

∗
i (i 6= j)

z∗
i zi = ziz

∗
i .

(15)

Using these relations the coherent states become

|z1, . . . , zn〉− = c(z1, . . . , zn)

∞∑
n1,...,nn=0

znnn · · · zn1
1√

[n1]! · · · [nn]!
|n1, n2, . . . , nn〉. (16)

Using (13) we can rewrite equation (16) as

|z1, . . . , zn〉− = c(z1, . . . , zn)ep(zna
†
n) · · · ep(z1a

†
1)|0, 0, . . . ,0〉 (17)

where

ep(x) =
∞∑
n=0

xn

[n]!

is a deformed exponential function.
In order to obtain the normalized coherent states, we should impose the condition

〈z1, . . . , zn|z1, . . . , zn〉− = 1. Then the normalized coherent states are given by

|z1, . . . , zn〉− = 1√
ep(|z1|2) · · · ep(|zn|2)

ep(zna
†
n) · · · ep(z1a

†
1)|0, 0, . . . ,0〉 (18)

where|zi |2 = ziz
∗
i = z∗

i zi .

2.2. Positive energy coherent states

The purpose of this subsection is to obtain another type of coherent states for the algebra (1).
In order to do so, it is convenient to introducen sub-Hamiltonians as follows

Hi = a
†
i ai − ν

where

ν = 1

1 − p
.

Then the commutation relation between the sub-Hamiltonians and mode operators are given
by

Hia
†
j = (δij (p − 1)+ 1)a†

j Hi [Hi,Hj ] = 0. (19)

The action of the sub-Hamiltonian on the number eigenstates gives

Hi |n1, n2, . . . , nn〉 = − pni

1 − p
|n1, n2, . . . , nn〉. (20)
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Thus the energy becomes negative when 0< p < 1. As was noticed in [13], for the positive
energy states it is not theai but thea†

i that play the part of of the lowering operator:

Hi |λ1p
n1, . . . , λnp

nn〉 = λip
ni |λ1p

n1, . . . , λnp
nn〉

a
†
i |λ1p

n1, . . . , λnp
nn〉 = q− ∑n

k=i+1 nk
√
λipni+1 + ν|λ1p

n1, . . . , λip
ni+1, . . . , λnp

nn〉
ai |λ1p

n1, . . . , λnp
nn〉 = q

∑n
k=i+1 nk

√
λipni + ν|λ1p

n1, . . . , λip
ni−1, . . . , λnp

nn〉
(21)

whereλ1, . . . , λn > 0.
Due to this fact, it is natural to define coherent states corresponding to the representation

(21) as the eigenstates of thea†
i :

a
†
i |z1, . . . , zn〉+ = zi |z1, . . . , zn〉+. (22)

Because the representation (21) depends onn free parametersλi , the coherent states
|z1, . . . , zn〉+ can take different forms.

If we assume that the positive energy states are normalizable, i.e.

〈λ1p
n1, . . . , λnp

nn |λ1p
n′

1, . . . , λnp
n′
n〉 = δn1n

′
1
· · · δnnn′

n

and form exactly one series for some fixedλi ’s, we can then obtain

|z1, . . . , zn〉+ = C

∞∑
n1,...,nn=−∞

[
n∏
k=0

pnk(nk−1)/4√
(−ν/λk;p)nk

(
1√
λk

)nk]

×znnn · · · zn1
1 |λ1p

−n1, . . . , λnp
−nn〉. (23)

If we require that+〈z1, . . . , zn|z1, . . . , zn〉+ = 1, we have

C−2 =
n∏
k=1

0ψ1

(
− ν

λk
;p,−|zk|2

λk

)
(24)

where the bilateralp-hypergeometric series0ψ1(a;p, x) is defined [14] by

0ψ1(a;p, x) =
∞∑

n=−∞

(−)npn(n−1)/2

(a;p)n xn. (25)

2.3. Two-parameter deformedgl(n) algebra

The purpose of this subsection is to derive the deformedgl(n) algebra from the deformed
multimode oscillator algebra. The multimode oscillators given in (1) can be arrayed in
bilinear form to construct the generators

Eij = a
†
i aj . (26)

From the fact thata†
i is a Hermitian adjoint ofai , we know that

E
†
ij = Eji. (27)
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Then the deformedgl(n) algebra is obtained from the algebra (1):

[Eii, Ejj ] = 0

[Eii, Ejk] = 0 (i 6= j 6= k)

[Eij , Eji ] = Eii − Ejj (i 6= j)

EiiEij − pEijEii = Eij (i 6= j)

EijEik =
 q

−1EikEij if j < k

qEikEij if j > k

EijEkl = q2(R(i,k)+R(j,l)−R(j,k)−R(i,l))EklEij (i 6= j 6= k 6= l)

(28)

where the symbolR(i, j) is defined by

R(i, j) =
{

1 if i > j

0 if i 6 j.

This algebra goes to an ordinarygl(n) algebra when the deformation parametersq and
p go to 1.

3. q-symmetric states

In this section we study the statistics of many particle state. LetN be the number of
particles. Then theN -partcle state can be obtained from the tensor product of the single-
particle states:

|i1, . . . , iN 〉 = |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iN 〉 (29)

wherei1, . . . , iN take one value among{1, 2, . . . , n} and the single-particle state is defined
by |ik〉 = a

†
ik
|0〉.

Consider the case wherek appearsnk times in the set{i1, . . . , iN }. Then we have

n1 + n2 + · · · + nn =
n∑
k=1

nk = N. (30)

Using these facts we can define theq-symmetric states as follows:

|i1, . . . , iN 〉q =
√

[n1]p2! · · · [nn]p2!

[N ]p2!

∑
σ∈Perm

sgnq(σ )|iσ (1) · · · iσ (N)〉 (31)

where

sgnq(σ ) = qR(i1···iN )pR(σ(1)···σ(N))

R(i1, . . . , iN ) =
N∑
k=1

N∑
l=k+1

R(ik, il)
(32)

and [x]p2 = (p2x − 1)/(p2 − 1). Then theq-symmetric states obey

| . . . , ik, ik+1, . . .〉q =


q−1| . . . , ik+1, ik, . . .〉q if ik〈ik+1

| . . . , ik+1, ik, . . .〉q if ik = ik+1

q| . . . , ik+1, ik, . . .〉q if ik > ik+1.

(33)
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The above property can be rewritten by introducing the deformed transition operatorPk,k+1

obeying

Pk,k+1| . . . , ik, ik+1, . . .〉q = | . . . , ik+1, ik, . . .〉q . (34)

This operator satisfies

Pk+1,kPk,k+1 = Id so Pk+1,k = P−1
k,k+1. (35)

Then equation (33) can be written as

Pk,k+1| . . . , ik, ik+1, . . .〉q = q−ε(ik,ik+1)| . . . , ik+1, ik, . . .〉q (36)

whereε(i, j) is defined as

ε(i, j) =


1 if i > j

0 if i = j

−1 if i < j.

It is worth noting that the relation (36) does not contain the deformation parameterp. Also,
relation (36) goes to the symmetric relation for the ordinary bosons when the deformation
parameterq goes to 1. If we define the fundamentalq-symmetric state|q〉 as

|q〉 = |i1, i2, . . . , iN 〉q
with i1 6 i2 6 · · · 6 iN , we have for anyk

|Pk,k+1|q〉|2 = ||q〉|2 = 1.

In deriving the above relation we used the following identity:∑
σ∈Perm

pR(σ(1),...,σ (N)) = [N ]p2!

[n1]p2! · · · [nn]p2!
.

4. Concluding remarks

In conclusion, we have used the two-parameter deformed multimode oscillator system
given in [12] to construct its representation, coherent states and deformedglq(n) algebra.
The mutimode oscillator is important for investigating many-body quantum mechanics and
statistical mechanics. In order to construct the new statistical behaviour for deformed
particles obeying the algebra (1), we have investigated the defomed symmetric property of
two-parameter deformed mutimode states.
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